Duality Methods for Waveform Inversion
نویسنده
چکیده
We show in this paper how the application of convex duality leads to various reformulations of the classical non optimizable least squares approach to waveform prestack inversion. These reformulations search all for i) a background velocity model and ii) a re-ectivity model deened in the time domain, and linked to the usual depth reeectivity model by prestack depth migration. We show that the data themselve are a good approximation of this optimal time reeectivity unknown when a quantitative migration is used. Hence duality provides a synthetic view of various approaches to prestack inversion, building up a bridge between concepts as diierent a priori as waveform inversion by minimization of data misst and migration velocity analysis. From a pratical point of view, it provides objective functions for the determination of the velocity background (data misst for the Migration Based Travel Time reformulation, norm of the stack of the prestack migrated sections for the Multiple Migration reformula-tion), whose evaluation and optimization by local gradient technique is now feasible, thus eliminating the need for travel time picking or analysis of coherency panels. M ethodes de Dualit e pour l'inversion sismique R esum e : Nous montrons dans ce papier comment la dualit e convexe permet de reformuler le probl eme classique de l'inversion sismique par moindres carr es, qui est connu pour ^ etre non optimisable. Ces reformulations cherchent toutes a d eterminer i) un mod ele de r eeectivit e d eeni dans le domaine temps, et li e a la r eeectivit e habituelle en profondeur par un op erateur de migration. La dualit e permet ainsi d'avoir une vue synth etique des diverses approches de l'inversion avant sommation, montrant par exemple le lien entre des concepts a priori aussi dii erents que l'approche moindres carr es et l'analyse des vitesses de migration. D'un point de vue pratique, elle fournit des fonctions objectif pour la d etermination des vitesses de r ef erence (erreur sur les donn ees pour la reformulation en Temps de Parcours Bas e sur la Migration, norme de la somme des sections migr ees avant sommation pour la reformulation par Migration Multiples), dont le calcul num erique et l'optimisation par des m ethodes de gradient est aujourd'hui possible, ce qui elimine le recours au point e d'horizons sismiques et a l'analyse des panneaux de coh erence.
منابع مشابه
Discretized Adjoint State Time and Frequency Domain Full Waveform Inversion: A Comparative Study
This study derives the discretized adjoint states full waveform inversion (FWI) in both time and frequency domains based on the Lagrange multiplier method. To achieve this, we applied adjoint state inversion on the discretized wave equation in both time domain and frequency domain. Besides, in this article, we introduce reliability tests to show that the inversion is performing as it should be ...
متن کاملMigration Velocity Analysis and Waveform Inversion
Waveform (output least squares) inversion of seismic reflection data can reconstruct remarkably detailed models of subsurface structure, and take into account essentially any physics of seismic wave propagation that can be modeled. However the waveform inversion objective has many spurious local minima, hence convergence of descent methods (mandatory because of problem size) to useful Earth mod...
متن کاملGPR Full Waveform Sensitivity Analysis using a FDTD Adjoint Method
Coarse structures involving low electrical contrasts can be profitably imaged by means of cheap and relatively simple methods such as travel time tomography, whereas fine structure involving sub-wavelength detail can only be recovered by inverting full-waveform data. Despite its complexity and high computation costs, full-waveform inversion of GPR data has become a popular tool for high-resolut...
متن کاملImaging and Inversion with Acoustic and Elastic Waves
Imaging the interior of a region with waveforms recorded on the surface is a key application of scattering theory in geophysics, medical imaging and many other fields. In this chapter I will discuss how the waveform inversion problem can be formulated in terms of statistical inference. Statistical methods are essential in order to be able to take into account the limited, uncertain nature of th...
متن کاملSeismic waveform inversion in the frequency domain, Part 1: Theory and verification in a physical scale model
Seismic waveforms contain much information that is ignored under standard processing schemes; seismic waveform inversion seeks to use the full information content of the recorded wavefield. In this paper I present, apply, and evaluate a frequency-space domain approach to waveform inversion. The method is a local descent algorithm that proceeds from a starting model to refine the model in order ...
متن کامل